Package: fdaoutlier 0.2.1
fdaoutlier: Outlier Detection Tools for Functional Data Analysis
A collection of functions for outlier detection in functional data analysis. Methods implemented include directional outlyingness by Dai and Genton (2019) <doi:10.1016/j.csda.2018.03.017>, MS-plot by Dai and Genton (2018) <doi:10.1080/10618600.2018.1473781>, total variation depth and modified shape similarity index by Huang and Sun (2019) <doi:10.1080/00401706.2019.1574241>, and sequential transformations by Dai et al. (2020) <doi:10.1016/j.csda.2020.106960 among others. Additional outlier detection tools and depths for functional data like functional boxplot, (modified) band depth etc., are also available.
Authors:
fdaoutlier_0.2.1.tar.gz
fdaoutlier_0.2.1.zip(r-4.5)fdaoutlier_0.2.1.zip(r-4.4)fdaoutlier_0.2.1.zip(r-4.3)
fdaoutlier_0.2.1.tgz(r-4.4-x86_64)fdaoutlier_0.2.1.tgz(r-4.4-arm64)fdaoutlier_0.2.1.tgz(r-4.3-x86_64)fdaoutlier_0.2.1.tgz(r-4.3-arm64)
fdaoutlier_0.2.1.tar.gz(r-4.5-noble)fdaoutlier_0.2.1.tar.gz(r-4.4-noble)
fdaoutlier_0.2.1.tgz(r-4.4-emscripten)fdaoutlier_0.2.1.tgz(r-4.3-emscripten)
fdaoutlier.pdf |fdaoutlier.html✨
fdaoutlier/json (API)
NEWS
# Install 'fdaoutlier' in R: |
install.packages('fdaoutlier', repos = c('https://otsegun.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/otsegun/fdaoutlier/issues
- spanish_weather - Spanish Weather Data
- world_population - World Population Data by Countries
Last updated 1 years agofrom:c96c35b1a7. Checks:OK: 4 NOTE: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win-x86_64 | NOTE | Nov 04 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 04 2024 |
R-4.4-win-x86_64 | NOTE | Nov 04 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 04 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 04 2024 |
R-4.3-win-x86_64 | OK | Nov 04 2024 |
R-4.3-mac-x86_64 | OK | Nov 04 2024 |
R-4.3-mac-aarch64 | OK | Nov 04 2024 |
Exports:band_depthdir_outdirectional_quantileextremal_depthextreme_rank_lengthfunctional_boxplotlinfinity_depthmodified_band_depthmsplotmuodprojection_depthseq_transformsimulation_model1simulation_model2simulation_model3simulation_model4simulation_model5simulation_model6simulation_model7simulation_model8simulation_model9total_variation_depthtvd_msstvdmss
Dependencies:MASS